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Nonexponential Decay in Relaxation Phenomena 

A. K. Rajagopal, 1 K. L. Ngai, 2 R. W. Rendell, 2 and S. Teitler 2 

A variety of considerations from different points of view including non- 
Markovian stochastic processes, basic quantum mechanics, and a mechanism 
based on condensed matter physics, all lead to the fractional exponential decay 
at long times in relaxation processes. Implications of this decay law and its 
verifiable predictions in a broad range of phenomena in condensed matter 
physics are pointed out. 
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1. INTRODUCTION 

Experimental data on relaxation phenomena in diverse areas of condensed 
matter physics are quite generally found to exhibit slower than exponential 
decay for long times in the form (see Ref. 1 and references therein) 

exp( -a tb) ,  a > 0 ,  0 < b < l  (1) 

The physical origin of this behavior will be discussed here from several 
points of view. These include the necessity of time-dependent transition 
rates (TDTR) in relaxation theory and their treatment via a time scale 
transformation, the constraints on the form of the TDTR from quantum 
mechanical considerations and a theorem in Fourier transforms, the re- 
quirements on microscopic distributions in frequency of the underlying 
relaxing entities such as dipoles or charge carriers from basic probability 
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theory of limit distributions for sums of independent random variables, and 
consideration of the generalized master equation (GME) with an underly- 
ing non-Markovian stochastic process with TDTR, all leading to long time 
nonexponential relaxation given by Eq. (1). We also discuss the relationship 
of Eq. (1) with the mathematical framework of the continuous time random 
walk (CTRW), GME, and the H theorem of statistical mechanics. A 
quantum mechanical model is described which leads to Eq. (1) and in 
addition predicts a relaxation time renormalization which alters activation 
energies, and temperature and molecular weight dependences. These pre- 
dictions have been verified experimentally in electronic materials, ionic 
conductors, glasses, polymer melts, and other materials. The calculational 
ease of the time scale transformation method is demonstrated for an 
important physical example. The general applicability of Eq. (1) to eluci- 
date the vast array of experimental results in relaxation phenomena in 
condensed matter is briefly described. Thus TDTR leading to Eq. (1) is 
found to be essential in describing relaxation phenomena. 

2. T IME SCALE T R A N S F O R M A T I O N  

The traditional phenomenological description of relaxation is based on 
stochastic processes with time-independent transition rates (TITR) leading 
to the usual exponential decay. In view of the experimentally observed 
nonexponential behavior, given by Eq. (1), it is necessary to consider 
TDTR in the stochastic theory. We have shown (2) that a special class of 
TDTR given by t b -  1 can be related to TITR by means of a time scale 
transformation, for which the relaxation function is of the form Eq. (1) and 
the time scale transformation is the monomial, O ( t ) =  at b. This comes 
about by the requirement that the TDTR be such that the relaxation 
function associated with it depend only on the ratio t / ,c ,  where ~- is a 
constant characteristic time and in the time transformed frame this pro- 
cess becomes one with TITR with corresponding relaxation function 
exp(-0/~-s), where % is another constant. The only time transformation 
that has the property 0(~-)=% which converts a TDTR to a TIDR as 
above is the monomial. 

3. THE P A L E Y - W l E N E R  THEOREM AND TDTR 

The transition rate can be calculated quantum mechanically and the 
use of the golden rule leads to TITR. However, the golden rule is an 
approximation and this breaks down whenever the energy difference of the 
two states between which transitions are taking place goes to zero. In the 
relaxation regime, typically in the range of 10 l~ Hz and below, such 
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characteristic energy differences may approach zero and a more careful 
calculation leads to TDTR. A general bound on TDTR is provided by the 
Paley-Wiener theorem (4) in Fourier transform theory, which is found to 
lead to a lower bound on the relaxation function in the form Eq. (1). The 
requirements of the Paley-Wiener theorem in our context are semiboun- 
dedness of the energy spectrum of the Hamiltonian and the quadratic 
integrability of the relaxing states, both of which are physically acceptable. 

The relaxing system is a complex many-body system whose low-energy 
excitations below approximately 101~ Hz determine TDTR. A detailed 
knowledge of the many-body excitations is not available at present. How- 
ever, the many-body density of states of a random matrix Hamiltonian has 
been deduced by Wigner sometime ago and this can be used here to obtain 
TDTR. Interestingly, this also leads to Eq. (1). More details of this 
dynamical model are given in Section 8. 

4. LIMIT DISTRIBUTIONS OF LOW-ENERGY EXCITATIONS 

Given the universal form of the macroscopic relaxation function in Eq. 
(1), one is led to consider a microscopic mechanism underlying relaxation 
phenomenon in general. We may think of the relaxing body as being 
composed of some species of relaxing entities such as electric dipoles in an 
dielectric, charge carriers in a semiconductor, etc., each of which has 
identically distributed energy variables with the same energy distribution. 
The macroscopic energy distribution function p(e)  associated with the 
relaxing body for low energies is the limit distribution of normalized sums 
of the microscopic energy variables. A similar procedure is involved in 
statistical mechanics for deriving equilibrium ensemble distributions. The 
resulting macroscopic density distribution p(e) necessarily obeys the rela- 
tionship(5) 

+ b) = ( a l a 2 / a ) (  p(al(  - e)  + b ) p ( a S +  p( ae b2) (2) 
J -  - - 0 0  

for every set of parameters a i > O, b i with the corresponding a > 0, b related 
to the parameters a i, b i. The relaxation function is proportional to the 
modulus square of the Fourier transform, [c(t)] 2, of the energy distribution 
function p(e). For distributions obeying Eq. (2) this is necessarily of the 
form (5) 

Ic( t ) l  2 = e -attlb, a > 0, 0 < b < 2 (3) 

If, in addition, the spectrum of the Hamiltonian is semibounded as in 
Section 3, then the Paley-Wiener theorem applies and the values of b have 
to be in the smaller range 0 < b < 1, leading us again to Eq. (1). For such 
microscopic models, we see that the Paley-Wiener bound becomes exact. 
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5. AN OSCILLATOR RELAXATION MODEL 

A chain of coupled oscillators can serve as a model of a Brownian 
particle in contact with a heat bath. (6) For arbitrary oscillator interactions, 
the Brownian particle obeys a generalized Langevin equation with a time- 
dependent friction coefficient, and a Gaussian random force determined 
solely by the Hamiltonian of the coupled oscillators and the canonical 
distribution of the initial coordinates and momenta. The Paley-Wiener 
theorem (4) can be applied to this problem if the normalized frequency 
spectrum of the oscillator assembly is bounded from below. The Fourier 
transform of the spectrum is the momentum autocorrelation function of the 
single Brownian oscillator, and this is then bounded by a function of the 
form Eq. (1). If the bound is assumed, a time scale transformation can be 
used to convert the generalized Langevin equation into the classical 
Langevin equation with a time-independent friction coefficient and a 
Gaussian white noise random force. Transforming back to the t frame, we 
find that the covariance of the external random force takes the form of 
white noise modulated by a monomial friction coefficient, t b- ~. It can be 
noted that a covariance of the same form is obtained in the long time limit 
from fractional Brownian motion. (7) However, this connection to fractional 
Brownian motion is rather tenuous because the form of the noise does not 
uniquely specify the stochastic equation of motion. 

6. CONTINUOUS TIME RANDOM WALK AND GENERALIZED 
MASTER EQUATION 

There exists a mathematical framework of the continuous time random 
walk (CTRW) (8) and the associated master equation (GME) (9) for studying 
time-dependent problems. The basic quantity entering the formalism is the 
waiting time distribution function +(t), which is the probability density 
function for the time between the arrival of a walker at a given lattice point 
and the initiation of the next step to another site. If the waiting time 
distribution function is taken as minus the derivative of Eq. (1), then the 
CTRW framework can be applied to relaxation problems in condensed 
matter. When the moments/~m of the waiting time distribution functions are 
all finite, the Markovian master equation is an appropriate description for 
times which are large compared with t* -- sup(~, , /m!) l/m. For q~(t) given 
by minus the derivative of Eq. (1) it is found that t* is finite for 1 ~< b ~< 2 
and infinite for 0 < b < 1.(J0) Thus a non-Markovian description is always 
required for relaxation functions of the form Eq. (1). 

In most applications of CTRW, in order to have a +(t) which is 
universal for all sites, one has to perform an average over all possible 
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configurations of the walkers. This physical picture is inappropriate for 
materials where short-range order exists, which is the common situation in 
condensed matter. A model, described in Section 8, in which a relaxation 
function of the form Eq. (1) arises from a fundamental mechanism that is 
operative at every hop of the walker from any lattice site, produces a +(t) 
universal for all sites without averaging. 

7. CTRW, GME, AND THE H THEOREM 

In CTRW, the waiting time distribution function is related to the 
memory function of the GME. (9) If the GME is to describe a time- 
dependent statistical mechanical phenomenon, it must obey the H theorem, 
which is a statement of the second law of thermodynamics. The H theorem 
cannot accommodate arbitrary memory functions and therefore also arbi- 
trary waiting time distribution functions. The choice of minus the derivative 
of Eq. (1) for the waiting time distribution in the CTRW along with the 
time scale transformation of Section 2 enables us to demonstrate the 
validity of the H theorem for this choice. (10) 

8. MODEL FOR LOW-ENERGY EXCITATIONS 

A model (1) in which a relaxing primary species, such as a reorienting 
electric dipole, a hopping charge carrier, or a flexing polymer chain, 
interacts with a new class of very-low-energy states (correlated states or CS) 
produces a relaxation function of the form Eq. (1) as well as correlates the 
dispersion with shifts in activation energies, molecular weight dependence, 
temperature dependence, and other quantities. A random matrix formula- 
tion of energy level distributions can be used to study the properties of the 
CS. It is found that for materials having short-range spatial order, the effect 
of such CS excitations is to alter a constant TITR T o i to a TDTR given by 
%-%xp(-ny)(%t)  - n  for times greater than approximately ~ c  -1  . H e r e  n is a 
measure of the coupling strength of the CS and is restricted to 0 < n < 1. 
The cutoff frequency % depends on material structure but is typically of 
the order 101~ Hz for glasses, polymers, and amorphous metals and semi.- 
conductors, and y ~ 0.577. 

The above TDTR results in a relaxation function of the form Eq. (1) 
with b -- 1 - n and a shifted relaxation time Tp = a - 1 / b  given by 

T ,  = [ ( 1  - l / l - "  (4) 

The CS model is therefore able to identify the physical meaning of the 
parameters in Eq. (1) and is able to make predictions other than dispersion. 
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The implications of Eq. (4) are widespread. For example if % is 
temperature activated with activation energy E A , then the relaxation pro- 
cess will appear to be activated with energy E~ = E A/(1 - n). This predic- 
tion has been verified in detail for transient current in chalcogenide 
glasses. (li) The correct value of E,~ is predicted from the measured value of 
EA and the value of n obtained from the dispersion of the current. In 
addition, the values of E,~ correlate correctly with changes in the dispersion 
as the value of n is changed by doping. 

Another result of Eq. (4) is the prediction of molecular weight depen- 
dences of viscoelastic quantities for polymer melts. (12) Low-molecular- 
weight polymer chains move essentially independently and the relaxation 
times of these chains scale as M 2. As the molecular weight increases, 
entanglements with neighboring chains are more frequent and large-scale 
cooperative motions couple via the entanglement junctions to the CS of the 
polymer system. The longest relaxation times of the chain then scale, by 
Eq. (4), as M 2/(l-n). If, in addition, spatial entanglements are imposed by 
confining the chain within a tubelike region, quantitatively accurate predic- 
tions are obtained concerning the viscosity ~/(where ~7 ez M,),  the recover- 
able compliance Je ~ the plateau modulus G ~ and other quantities in the 
terminal regime for both linear and branched polymers. For linear poly- 
mers, n is typically between 0.4 and 0.5, and this results in 3.3 < /~ < 4 and 
2 < J~176 < 3. For branched polymers, as determined from dispersion, n 
typically has larger values which implies larger/x and J~176 These quanti- 
ties can simultaneously be correlated with changes in the temperature 
dependence by the flow activation energy. All these features are in remark- 
able agreement with data. The ability of this model to describe polymer 
melt dynamics is far superior to the reptation model. (13) Details of the 
polymer melt model are presented elsewhere. (12) 

Other implications of Eq. (4) include dielectric and structural relaxa- 
tions near Tg for polymers and small molecule glasses, (14) y relaxation of 
bulk polycarbonate, (15) and volume recovery (16) of PVAC. Thus the disper- 
sion given by Eq. (1) and the shifted relaxation times given by Eq. (4) play 
important roles in a large number of materials and relaxation phenomena. 

9. CALCULATIONS USING TIME SCALE T R A N S F O R M A T I O N S  

Within the model of CS excitations of Section 8, the time scale 
transformation of Section 2 becomes O(t)= An t l -n ,  where A, = ( 1 -  
n)-le-nV~oc n . The use of this technique considerably simplifies calculations 
of relaxation phenomena. This is illustrated here by considering hole 
transport across a biased chalcognide glass sample of thickness L. In the 0 
frame, hopping relaxation at any site will have the same time independent 
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transition rate W,. The current in the 0 flame, I(0), is easily determined 
and the transient current in the laboratory t frame can be calculated by 
1 ( 0  = I (O)(dO/dt) .  With O(t) given as above, it is found that I ( t )  oct  -~ 
for t<< t T and a more rapid drop-off for t>> t r. The transit time t r 
e c ( E / L W s )  1/1-~ exhibits superliner thickness and electric field depen- 
dences and is thermally activated with energy E ~ - - E A / ( 1 -  n) if W, is 
thermally activated with energy E A .~ ]) 

10. APPLICABILITY OF FRACTIONAL EXPONENTIAL RELAXATION 

The fractional exponential relaxation function given by Eq. (1) along 
with the shifted relaxation times of Eq. (4) lead to unifying predictions in 
many fields and materials. These include dielectric relaxation, viscoelastic 
relaxation, nuclear spin relaxation, flicker 1 I f  noise, generation-recom- 
bination noise, transient electrical transport, transient capacitance, photo- 
luminescence, volume and enthalpy recovery, physical aging, plasticity and 
yielding, and polymer melt dynamics. Further study can be expected both 
to yield deeper insight into the nature of low-frequency fluctuation, dissipa- 
tion, and relaxation phenomena in condensed matter, and to result in 
predictions for many other materials and applications. 

11. SUMMARY AND CONCLUSIONS 

The dominance of fractional time exponential relaxation of the form 
Eq. (1) in diverse phenomena has been emphasized here. Such relaxation 
functions require that the accompanying transition rates have power law 
time dependences. These dependences can be physically motivated in 
several different ways. However, the dispersion of the relaxation predicted 
by Eq. (1) is observed to correlate with several physical quantities including 
activation energies, and temperature and molecular weight dependences. A 
physical model in which a relaxing species interacts with a set of low-energy 
states is able to predict such correlations. It is important to stress that a 
proper description of relaxation requires not only fractional powers of time 
in the dispersion as in Eq. (1), but also relaxation times which shift with 
changes in dispersion as in Eq. (4). 
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